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SUMMARY e
/6T 85

| Z::l C¢77/ A theoretical investigation is made of the axisymmetric snap-through
ouckling of a shallow cone subjected to an idealized impulse applied
uniformly over the surface of the shell. The.wqfk is based on a study of
the strain energy of the shell at a time when the displacement of the
shell is a maximum (i.e., the velocity is.zero). Under certain conditi?ff/////'/

this equilibrium position becomes unstable and the shell can snap-through

(or buckle). Nonlinear strain—-displacement equations are used and solutions

are obtained for clamped and'simply supported boundaries at the edge of the

shell. Results for the cone are compared with similar results for a

shallow spherical cap having the same rise as the cone. This comparison

indicates that the sphere can resist a larger impulse than the cone before

buckling. : /q UTH O

1 ¢f¢?5“”£éd?n&7%%ﬁua,a£‘

]

s

A el

PR




~ INTRODUCTION

The buckling of structures subjected to dynamic loads is of interest
in many engineering problems. In the aerospace field, for example, the
lcads on missiles &t launching and staging are cases where the principal
forces are dyramic and where buckling can be the mode of failure. Unfor-—
tunctely dynamic buckling is a much more difficult problem than is static
buckling. Not only is there the added time parameter but élso it is not
yet clear what is meant by dynamic buckling and what constitutes a reasonable
failure criteria. As a result of this situation numerous techniques have
been used in an attempt to treat the problem.

A recent and useful method for studying dynamic buckling problems is
one suggested by Humphreys and Bodner in references 1 anq 2 and described
in detall below. The method is limited to the snap-through buckling problem
of a shell subjected to an initial idealized impulse; however, it can be
very useful for this class of problems.

It is the purpose of this paper to apply the method of Humphreys and
Bodner to the axisymmetric snap—through buckling of a shallow cone subjected
to an idealized impulse applied uniformly over the sﬁrface of the shell.

A solution is obtained for laterally restrained boundaries for both the
simply supported and fixed cases. Solutions are also obtained for a rather
unusual set of boundary conditions called "stress frge", where both the
horizontal and circumferential stresses are assumed to vanish. With these
latter boundary coanditions the analysis is simélified and results for the
cone can be compared with similar results given in reference 1 for the

shallow sphere.
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SYMBOLS

exdernal radius

b hedf—widslm of the shell
r horizontal coordinate
t thickness of'shell
u horizontal displacement of shell
vO initial velocity of shell
P GE WAL
W avertical displacement of shell
z vertical coordinate
5t

D flexural stiffness of the shell, —p

12(1 - u7)
E Youngts modulus
H - center rise of the shell-
I initial impulse parameter,

pt E
~N
=24 2
I' modified impulse parameter, L Ehiﬁ(l il ), I2
Ept H2 U\

I initial impulse per unit area .

~

cadial cha €S 1w
12 Ké -hcrizéntai and circumferentialacurvatures

To initial kinetic energy of shell
\ nondimensional strain energy, v
2nH?tE
v strain energy of the shell
a constant, see eq. (15) -
vadia)
€1, & i and circumferential extensional strains

N shell parameter, % VlE(l - “2)

. r o | /b
A modified shell parameter, VE;, [&8(1 -u)

M Poissons ratio

ol

horizontal and circumferential stresses

P wmass dcns.‘-k' of tha shel)



METHOD OF APPROACH

In treating the problem of the snap—through buckling of a shell
subjected to an impulse, it is assumed that the load is distributed uniformly
over the structure. Furthermore, since the load is an impulse it can be
consider=d to be removed before the shell has begun to move. This impulse
therefore triansmits a uniform initial velocity to the structure; that is,

it represents an input kinetic energy. At some later fime, tl (not determined),

i+ |5 assumed +hat

"the displacement of all points on the she€ll has reached a max1mum and the Qﬁ‘
<

wence +ha shell gxhibits +he chanacderof & sia *31 ree ©
e st

velocity of these points 1s zergm The snap-through eh&rae%er of
J be havrer

can be determined from a study of the eguilibrium state at time tl. At this

time the internal straln energy of the shell must be equal to the initial

cture

kinetic energy because of conservation of energy. From a.study of the strain
energy o*‘time tl, one can then determine the initial kinetic energy required
to cause the motion of the shell to exhibit a large Jjump. This Jjump is then

defined as the point of snap-through or '"buckling".

/A gualitative plot of the strain energy versus deflection of the
structure is shown in figure 1. A requirement for "buckling" as defined
herein is that the strain energy of the shell must decrease {imétesting—en
with (wcrease m —a R e enA defleotio, .
i $ . Consequently,
vhen snap-through océurs the strain energy at maximum displacement must be
& relative maximum with respect to the maximum displacement. =Fras—at
“erehtimzi—tie—rete—of—chamgevithestratrenesgy—with—respect—to tle
Hextmor oSy Tateme nt-Bae—NaR i she——

An alternate explanation of the snap—through criteria is to note tﬁat

the initial kinetic energy is equal to the strain energy at the maximum

displacement ;%f Hence, the maximum displacement can be regarded as a

XJ
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function of the initial input velocity. When the shell snaps through
there is a sudden increase in maximum displacement with respect to &
change in initial velocity. The condition for snap-through is therefore

]
glven by

dw
_—é=co
av :
o}
or
=0

\3?10%

GOVERNING EQUATIONS

The problem to be considered is that of a shallow cone subjected to
axisymmetric deformations. The cone has a height H, an external radius b,

and thickness t. The radius to a polnt on the middle surface is r (see fig.

2), The shaliow Oene congidered here s one wherg the rse
anale of +he Cone aud 145 si1e ca~ be replaced by 7T},
The strain energy V of the cone at some time when the displacement is

a maximum and the velocity is zero can be expressed as the sum of the contri-

bution due to membrane effects V; and bending effects V.. Thus

b
V = Vm + Vb (la)
where -
b
v = _JEt 2 2 ,
N AR u/; (o + <& + suerep)rr (10)
= b 2 2
Vp = "Df (%)% * K + 2Ky v (1c)
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Here €5 € 1

curvatures in the radial and circumferential direction. Young's modulus

5 and K., K2 are, respectively, the extensional strains and i

Et3

is denoted by E, Poisson's ratio by i, and the shell stiffness by D = —_—

The strain energies can be nondimensionalized as

where
V = 23 , ete.
2nH"tE
resulting in
b
1 JF 2, .2
m = € + € + 2ueq€s |rar
2(1 - p2)He Jg ( 1 2 1 2)
and
1 o 2 2
Vp == [ (K + KT+ 20Kk )rar
28 Yo
with T T T e e . e
\2 12H2(l - pz)
t2 .
radia |
. The usual stress—strain relations taken for the hewmizonted an
w planc ‘

ﬁ\stresses are, respectively

E

LT (1 - u2)

(el + ueg)

o = z;—%;;;; (e2 + pel)

12(1 = 2)

(2a)

(2v)

(3a)

(3p)

(%)
v U}Cpmfcrca.“-;.,)
verticad

(5)




' hetlow
The nonlinear sirains for axisymmetric deformations of theacone are taken

as

- 6
cl = uI' -+ %.;rr 4 ;__,'_rr2 ( 8’)
€2 = % (6b)
Kl = WI'I‘ (60)

r

vaere u and w are the deflections in the horizontal (r) and vertical (z)
directions, respectively, and the-subscript r denotes differentiation with

respect to r.

The compatibility relationship between the strains becomes, therefore

(e2%)y - €1 = - 39,2 - Dy (1)

~

If the velcocity in the r direction %% is neglected, the equation of
qu\C‘

warizaptal equilibrium can be obtained from the first variation of equation

(3a) to give
'-g—f(rcl) -0, = 0] (8)

Equations (5) and (6) can be used to write equation (8) giving

2
_@-p)'r

rrr 2 r b “rr

e - - (6a)

- (1 -w) 5= § Yy (9)
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Taking account of equation (8) it can be shown that the following useful

identity exists between the stresses and strains.

Lrep) - @ = 2L - o] (20)

IMPULSE PARAMETER

- It is =ssumed that the shell undergoes an initial uniformly distributed
velocity due to ar impulse per unit area I. The initial kinetic energy TO

can therefore be related to the impulse by

2=
To=beI

2pt (11)

where p is the mass density of the shell.

At some later time, t., when the velocity is zero and the displacement

1
has reached a maximum the strain energy V at tl is equal to the initial
kinetic energy. Hence .
2==2
5 _ wbT

Nondimensionalizing according to equations(ﬁj,there results

451/"‘ v= 4b‘/H1_<Vh ‘vb)

I-= hkgv—_—-harg-(-*a;-rv-g) (13)
where -
=24
I L ‘5 (13a)

e,
E ftl E
a nrordimensional impulse parameter and where V_ and Vb are given by
i

equations (3a) and (3Db).
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RIGID BOUNDARY

Consider first the problem where the edge of the shell at r = b is

restrained from horizontal movement (rigid), i.e.,
= = 4
w'/r=b u/r=b © (1%)

The method of approach is to assume a vertical deflection w(r) and to
determine the impulse I given by equation (13) in terms of this deflection.
The impulse has been shown to be related to the strain energy which is a
function of both the lateral displacement u as well as w. The lateral
displacement u can be determined for a known w by integrating the equation
of horizontal eguilibrium, equation (9), together with the boundary con-—
dition, eguation (1h), and the fact that u = 0 at r = 0. Consequently,

the initially applied impulse I is expressible in terms of only w, the
maximum displacement. The impulse required for snap—through can then be
determined by differentiating I with respect to w.

An approximate solution for the maximum deflected shape can be taken

re r2 3 :
w=onl-bﬂZ l—urg?) (15)

where wb and o are constants. The boundary conditions at r = b may be

as

satisfied by a proper choice of a, i.e.

Clamped Edge: W, = o, a =1
Simply Supported- M, =-D(K, +pK,) =0 a = 1ru
Tl 1 2 ? 5 4+ p

The shape given by equation (15) corresponds to the shape taken by a
circular plate subjected to a uniform lateral load and supported at the

boundary.

P
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By substituting equation (15) into equation (13) and taking account
of ecuation (9) and the appropriate boundary conditions on u there results
after scme effort and with p = 0.3

1. For the Rigid Clamped Edge (wr/ = 0, a = 1)

r=b ~ u/r=b

L*[o 1151w Yo, 3633w 3. W (o 2876 & L 1333):{ (16)

2. TFor the Rigid Simply Supported Edge (M / = 0, a = 0.24528)

/r=b

=t Eo.lsewou - o.1+599wo3 2(0 3485 + 250%7)] (a7)
A

The condition for snap—through is
— =0 (18)

Carrying out the differentiation and taking the smaller root of the resulting
guadratic in wb yields

l. Clamped Edge

0.987
v o= 1.183§u - VO.15165 - i—)%is (19)

2. Simply Supported Edge

6. '
W= 1.12942 -\!0.13uu6 - _;(_229_3 (20)

It should be noted that at certainivalues of N the amplitude wb becomes
imaginary. At such values of A there is no real wb which correspond to the
snap—-through condition. The physical interpretation of imaginary values of
LA would appear to be that the shell does not exhibit a snapping phenomenon
and the motion is & smooth oscillatory moticn. The minimum values of A\

correspeonding to real wb are




1. Clamped Edge A_._ = 1hk,295
Ll
i.e., for ¢ = 0.3, H>4.34t
2. Simply Suvported Ao, = T.111
i.e., for u = 0.3, H>2.88t

Thus, for example, in the case of a cone with a rigidly fixed boundary
scap—throvgh buckling does not occur unless the rise of the cone H exceeds
b3k, .

A plot of equations (16) and (17) taking account of equations (19)
and (20) is given in figure 3. It should be noted that a slight change
in paraxzeters has been used in the plot in order to make some comparison
with the previously published results for a sphere. The modified parameters
are K' and I' where

[ua(l - uz)] a (21)

?G
1]
B
i
ﬁdﬂﬁ1

' I Tgbth(l - pg)

ng EpthH2

(22)

.
Figure 4 gives a plot of A versus the maximum critical deflection to
thickness ratio which exists at the time of buckling. A study of the

magnitude of this critical deflection shows that its value is of the order

W
o}

Tt
of the rise of the cone. In fact for A = 7.75 and 11.0, T

for the clamped

case is 0.8L0 and 0.805, respectively.
STRESS-FREE BOUNDARY

The effort required to obtain the lmpulse in terms of an assumed

displacement can be reduced considerably if a rather unusual set of boundary




conditions are taken at the edge r = b. These cconditions are denoted as
"stress free" and correspcnd to the case where
. - - /
w/b ol/b = og/b =0
With these conditions it can be shown that it - ~ressary to solve for

u in terms of w.

Vaile these boundary conditions may not appear realistic, the way in
which they simplify the calculations makes *~ ~thy of consideration.
They were aléo treated for similar reasocs ... .. ..crence 1 for the spherical
cap and, consequently, are cf interest here in order to compare the results
for the cone with those of the sphere.

The membrane strain energy equation (3a) can also be written in terms

of the stresses =zs
1 b 2 2
Vy, = ——-——f o + 07 - O3 0p rdr ) (214,)
R I ( 1 >

The product term 030, in equation (2k4) makes no contribution to the
energy for the stress—free boundary at b as is shown below. Using equation

(8) there results

rggal = I‘Ul(rdl)r

Integrating over the limits of r yields

Ar b (rclxewb
J I'O'eO'ldI‘ =f rcrl(rdl)r dr = -—2— J =0 (25)
0] o] ‘ [e]

Consequently, equation (24) can be written as

b
1 2
Vp = —— o] + op\r ar 26)
ZFE o (l 2) (.
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Also from the compatibility equation (7) together with equation (10)

it can be shown that

1., ~ I 1 2 W. /
(9L T O = - = & . 2D 27)
ELT %2 " 377 "5 % R

Integrating equation (27) from r to b and considering the stress—free

boundary conditions (eq. (23)) yields
1 b W
£(01 * %) =f (%Wrz + & r—r>dr (28)

From equation (28) the membrane energy equation (26) can now be expressed

in terms of only thz vertical deflection w as follows

1 b ke 2 . HV¥ °
\ =-——f f ( ~ +__£>dx r dr
B opR J, " b X (29)

»J

where x is & dummy variable of integration.

Agzin assuming w to be in the form of equation (15) and taking account
of eguation (29) in equation (13) the nondimensional impulse parameter I
becomes with p = 0.3.

1, Clamped Stress—Free Edge W, =0 =0, = 0, a =1

[y

I= uxl‘ [0.0631@%“ - O.l9817w03 woe( 0.15556 +

+

5.333)
z )J(3O)

g, =0, =0, a=0.24528)

17 9%

2. Simply Supported Stress-Free Edge (Ml

[
[}

h%.u I:O.O675wol+ - 0.2078\-103 + w02(0.16l9 + 1—6—%92>] (31)
A

o varan - oy ot i

i
i
]
{
i
{
v
1
!
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The corresponding critical deflections at snap-through buckling together
with the limits on A\ are

1. Clamped Stress—Free Edge

B ! 42
W = 1.17045 — ,{o.luu96 - F (32)
Mpin = 17.0216
H> 5.16t

2, Simply Supported Stress-—free Edze

i

w = 1.1544 —1f0.1334 — 22:08078 (33)
o) / 2
i A
Mpin = 70210
H> 2.88t

t
Plots of the modified critical impulse I versus the modified shell
[ 27) arc [2@

]
parameter N defined by equations A are given in figure 3. Figure 4

t
shows a plot of the amplitude of the critical deflection versus A\ .
DISCUSSION OF RESULTS

It is interesting to note in figure 3 that for relatively large values
of N the strength of the simply supporﬁed shell is greater than the fixed
case. On the other hand for émall values of A where the rise of the cone
is qulte small, the reverse effect occurs. These results would seem to
indicate that for high rise cones (relatively speaking) where the membrane
siresses are important, the more flexible the shell the stronger 1t is ﬁo

resist dynamic effects. In the case of small rises where the cone is very
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nearly a plate the mejor strength comes from the boundary conditions and
the bending rigidity of the shell. In this case the rigid boundaries are
2n aid to the dyepamic strength of the shell.

The first effect has beern noted previously by Humphreys and Bodner
(r22. 1 ) for long cylindrical panels wnere the simply supported panels
exnibited a greater resistance to snap—through than aia clamped panels.
The reversal in the relative strengths for the “two boundary conditions
which occurs for the very shallow cones, however, did not occcur for the
long cylindrical panels.

It ic also of interest to compare the behavior of a shallow cone with
that of a2 shallow sphere of comparable geometry. In order to make this -
comparison 1t was necessary to express the sphere parameter in terms of the

N

rize of the chell using the approximate relations appropriate for a shallow i

sgnere. This was done and figures 5 and 6 show the results for comparable

boundary conditions. The spherical results were taken from figures 6 and 7
of reference 1. In general, figure 5 shows that for a conical or spherical

shell of the same rise H, the stronger structure to resist dynamic buckling

e

S the sphere. Figure 6 indicates that at buckling the sphere has also
undergone a larger deflection than the comparable cone.
A final ccmment should be made with respect to the accuracy of the

present results. The two major sources of errcr lie in the choice of a

single degree of freedom for the deflected shape and .the requirement that

the cone deform axisymmetrically. Both of these effects become more ihportant
with increasing shell rise and the latter effect would seem to be the more
important of the two. In view of these effects the results given herein.

4
are Inadecuate for A beyond about 10; however, they may be useful as
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e. It should also be noted that it was §

[§¢]

qualitative data beyond that ran

shovm in reference 3 that the results of 2 single degree of freedom approxi—

¥

able to expect the same gualitative behavior to hold for the shallow cone.

>
Q
2
Q
E
3
£
H
i3

Powell, Matheratician, NASA Langley Research Center, who carried out a i

lerge portion of the calculations in this study.
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Center deflection to
thickness ratio,
Wo
t

Clamped
stress free

Clamped
Simply supported

Simply supported
s;tress lﬁt‘ee

| ] |
B 8 10 12 14 16 18
‘Shell parameter, A'

Figure 4. - Deflection at snap through for axisymmetric
shallow cones subjected to impulsive loads.




10,000 - Y
w Sphere: Clamped
‘Cone: Clamped
Sphere: Clamped
stress free
1,000 + Cone: Clamped
stress free
Impulse
parameter,
Il
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100 SPW
- ~
—
Cone
]
Shell geometry
R ISR ()
Ept? g2
1/4
1 H
A = ‘/-;[48 - uz)]
10 [ | ] | { | ] | | |
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Shell parameter, A'

Figure .- Snap through impulse versus shell parameter for
clamped axisymmetric shallow cones and spheres.
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